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Abstract – Space Vector Modulation (SVM) is widely used 
in industrial drives applications, and due its flexibility for 
the selection of the switching sequences as well as its 
suitability for digital implementation it is rapidly gaining 
favour in other applications such uninterruptible power 
supplies, force commutated rectifiers and active filters. In 
this context, this paper presents simple filter design 
procedure for different voltage fed space vector 
modulated (SVM) converters. The proposed design 
procedure is applied to six basic converters including 
single-phase and three-phase voltage fed rectifiers and 
inverters. Although, the normalized curves used in the 
design have been derived for a given symmetric switching 
sequence, it can be easily extended to other switching 
sequences. The paper describes in detail the proposed 
filter design procedure, including the supporting 
hypothesis and simplifications as well as a brief 
description of the SVM for converters considered. 
Aiming demonstrate the validity of the proposed design 
procedure, experimental results are also included. 
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I. INTRODUCTION 

Voltage-fed converters have been used to synthesize AC 
voltage or current waveforms in several applications, such as 
uninterruptible power supplies (UPS’s), motor drives and 
active filters. As a result, a number of converters topologies 
have been developed ranging from single-phase half-bridge 
to three-phase four-leg converters. In order to synthesize the 
desired voltage(s)/currents(s), several modulation strategies, 
differing in concept and performance have been developed 
[1-3]. The pulse width modulation (PWM) technique has the 
attractive characteristic of establishing the harmonic spectral 
components associated to the modulation at high frequencies, 
allowing the use of small filters to attenuate them [2]. In 
order to obtain optimized characteristics, different PWM 
schemes have been proposed, as the carrier-modulated sine 
PWM, the pre-calculated PWM and the space vector 
modulation [3-5]. The SVM has been receiving special 
attention since last decade because it allows to reduce the 
commutation losses and/or the harmonic content of output 
waveforms, and to obtain higher amplitude modulation 
indexes if compared with conventional PWM techniques 
[6,7]. Moreover, space vector modulation can be easily 
implemented in digital processors [8-10]. However, there is 
not reported systematic design procedure for the filter with 
space vector modulation converters such as for pulse-width 

modulation converters [11,12]. 
This paper presents a simple and systematic design 

procedure for the input/output filters for different voltage-fed 
space vector modulated converters. The proposed 
methodology is based on the concepts of distortion factors 
[3] that are now applied for SVM converters. The proposed  
design procedure is based on normalized design curves 
related to the switching sequences. Although the normalized 
design curves used in the design have been given for a 
symmetric switching sequence, it provides the basis for its 
extension to the other switching sequences. 

The remainder of this paper is organized as follows. 
Section II presents in detail the principles of the proposed 
methodology, including the supporting hypothesis and 
simplifications.  Section III gives a brief description of the 
SVM for the six analyzed topologies. Section IV validates 
the procedure experimentally.  

II. FILTERS DESIGN PROCEDURE FOR SVM 
VOLTAGE-FED CONVERTERS 

The proposed design procedure for the filters parameters 
is demonstrated in this section. First, the following 
assumptions about the space-vector modulated converters are 
made: 
(i) The switches of the converter are ideal, and the switches 

of the same leg are controlled complementarily. As a 
result the voltage(s) that is (are) fed to filter is (are) 
determined by state of conduction of the switches and 
the DC bus voltage; 

(ii) It is considered that the output voltage space is divided 
into regions, where for each region the switching 
sequence is defined a priori;  

(iii) The command vector is regularly updated at a fixed 
frequency, which is considered be equal to the sample 
frequency. Here it is defined the normalized sampling 
frequency as ms=fs /f1, where fs is the sampling frequency 
and f1 is the fundamental frequency. 

The normalized sampling frequency (ms) is independent of 
the number of commutations in a sampling period. This is a 
distinct concept if compared with the modulating frequency 
ratio (mf) that in often used in conventional PWM modulated 
converters [1]. Therefore, in SVM converters, the switching 
frequency depends of the switching sequences adopted as 
well as on the normalized sampling frequency ms. Aiming to 
illustrate this statement, it is presented in the Fig.1 two 
distinct SVM switching sequences with different number of 
commutations per sampling period for a “sector” of the 
single-phase full-bridge converter. This figure shows the 
patterns produced by the each leg. Performing the spectral 



analysis of vab for a complete cycle of the modulating 
sinusoidal waveform for the two switching sequences, it is 
found out that the harmonics spectrum for both sequences are 
distinct, although they have same sampling frequency. The 
Fig. 2 shows the spectra for these switching sequences with 
ms=64, where it can be seen that the first group of harmonics 
appears around the 64-th and 128-th harmonic, respectively. 

The following subsections describe the design procedure 
for the first and second-order filters for the single-phase full-
bridge converters, including the supporting hypothesis and 
simplifications. Then, it is depicted how to extend the 
described procedures to the others topologies. 

 
1) Design of second-order filters for single-phase full-

bridge converters: Fig.5b shows the power circuit of the 
single-phase full-bridge converter. It is considered that this 
converter is connected to the second-order output filter 
shown in the Fig.5c, and it is assumed that the design 
objective is to determine the corner frequency of the filter in 
order to obtain the given total harmonic distortion (THD) in 
the output voltage, where the THDv is defined by 
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n is the order of the harmonic, and Vo(n) is the peak value of 
the n-th harmonic. Note that the voltage Vo can be expressed 
as a function of the inverter output voltage Vab, that is 
 ( ) ( ) ( )o abV s G s V s=  (2) 

where G(s) is a transfer function from the inverter output to 
the filter output, which in this case is given by 
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where ωc=2πfc and ζ is the damping ratio. 
The frequency response of G(s) depends on the load. Fig. 

3.a shows the frequency response of G(s) and its asymptote 
approximation for different damping ratios (ζ=0 and ζ=1). It 
is worth mentioning, that the purpose of the filter is to 
attenuate the high order harmonics generated by the 
modulation. As a result, the corner frequency of the filter ωc 
is usually smaller than the lowest high order harmonics 
generated by the SVM. Therefore, in the high order 
harmonics frequencies range, the frequency response of G(s) 
can be approximated by a high frequency asymptote. For 
frequencies higher than 5ωc the error between the frequency 
response of G(s) and its approximated frequency response is 
smaller then 5%, as seen in Fig.3b. It is also shown in Fig. 
3.b shows this error in the low frequency range. This error is 
smaller then 1% for frequencies smaller then 0.1ωc. 

Assuming the ω1≤0.1ωc and that the SVM do not generate 
low order harmonics in the frequency band between 0.1ωc to 
5ωc. Then the frequency response of G(s) can be expressed 
as: 
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As a result the n-th order output voltage harmonic 
component can be written as 
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and the THDv expression can be rewritten using (5) into (1) 
yields 
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Fig. 1. Leg voltages, sampling instants and switching vectors in a 
given “sector” for two distinct switching sequences in a SVM 

single-phase full-bridge converter. (a) Switching sequence v0v1v0; 
(b) Switching sequence v0v1v3v1v0. 

 

m s 2m s 3m s 4m s   

m s 2m s 
  

3m s 
  

4m s 
  

m a 

 f      f 1   

ab
   

 D
C
 

V 
 V

 

 f      f 1   

1 

  1 
m a 

ab
   

 D
C
 

V 
 V

 

 
 

Fig. 2. Normalized frequency spectrum of vab for two different 
switching sequences in the single-phase full-bridge SVM converter 

modulated by a sinusoidal waveform with ma =0.8, ms=64. 
(a) Switching sequence v0v1v0; (b) Switching sequence v0v1v3v1v0. 
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Fig. 3. (a) Normalized frequency response of G(s) for ζ=0  

and ζ=1 and the asymptote approximation for G(s). 
 (b) Error between the frequency response of G(s) for 0≤ζ≤1 

and it asymptote approximation, for 0.1ωc ≤ ω ≤ 10ωc. 

(a) 

(b) 

(a) 

(b) 



 

1/ 222

2 1

ω1 ( )
(1) ω

c
v ab

nab

THD V k
V n

∞

=

     =        
∑  (6) 

Once the high order harmonics components of Vo with 
significant magnitude are in the side bands around the 
multiples (and submultiples) of the sampling frequency, for 
instance as shows the Fig. 2, (6) can be rewritten as, 
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where a1, a2, ... are the relative spectral positions of the high 
order harmonics groups m of the spectrum of Vo. For 
example, in the presented topology, for the switching 
sequence v0-v1-v0, a1=1, a2=2,... , and for v0-v1-v3-v1-v0, 
a1=2, a2=4,... . On the other hand, b1, b2,... delimit the width 
of the side bands around a1ms, a2ms,…, respectively, where 
the harmonic components of Vo have a significant magnitude, 
for instance, greater than 1% of Vo(1). 

Assuming that a1ms, a2ms, …  are sufficiently large, the 
following approximations are valid,  
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As a result (5) can be simplified as follows 
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In order to obtain an expression for the THDv independent 
of the VDC, the following normalizations are made: 

* ( ) ( ) DCab abV k V k V=  and, * (1) (1)a DCab abV m V V= = . Hence, the 
equation (9) can be rewritten as 
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Aiming to demonstrate the validity of the simplifications 
carried out, Fig.4 shows several curves for nDF2. These plots 
were obtained for a symmetric switching sequences for the 
full-bridge inverter with different ms. Each curve is 
multiplied by it ms

2 aiming to demonstrate that the errors due 
to the normalization are small for ms > 32. 

In order to simplify the design an abacus of nDF2 is given 
in the Fig.12 for the sequence presented in the Table IV. 
Therefore, the corner frequency of the filter can be directly 
obtained from (10). The values of L and C can be determined 
from ωc, by selecting one of them and calculating the other.  

2) Design of first-order filters for single-phase full-bridge 
converters: Let us consider the single-phase full-bridge 
converter is operating as controlled rectifier with a first-order 
input filter, which is shown in the Fig.5d. It is assumed that 
the design objective is to determine the inductance of the 
filter in order to obtain the given total harmonic distortion 
(THD) of the input current, where the THDi is defined as 
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and Iin(n) is the peak value of the n-th harmonic component 
of iin and Iin(1) is the peak value of the fundamental 
component. The input current iin can be expressed as a 
function of the inverter output voltage vab that is: 

 ( ) ( ) ( )in abI s G s V s=  (13) 

where G(s) in this case is given by 
 ( ) 1G s sL=  (14) 

Hence, 
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where 1ωLX L= . It can be observed in (14) there is no 
difference between the asymptote approximation and the 
frequency response of the filter.  

Therefore, by substituting (14) into (13) and assuming the 
same hypothesis made for (7) and (8), yields 
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Normalizing Vab(k) in relation to the DC bus, results in:  
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Fig. 4. Normalized distortion factor nDF2 ms

2. Full bridge inverter 
with a symmetric SVM for ms = 32, 64, 128. 



In order to simplify the design the factor nDF1 can be 
derived a priori. An abacus of nDF1 in function of the 
modulation amplitude ratio (ma) is given in the Fig.11, for 
the sequence presented in the Table IV. As a result, the value 
of the inductor for the filter can be directly determined from 
(17). 
 

3) Extending the filter design procedure to others 
converters topologies: The proposed filter design procedure 
can be extended to others topologies by modifying 
adequately the expressions for THDi and THDv. The half-
bridge and full-bridge converters have a similar filter 
structure and similar THD formulations. However, three-
phase filters are MIMO and can contain coupled dynamics. 
In these cases, each output of the filter is related to a set of 
voltages generated by the legs of the converter. So, in order 
to obtain equations of the THD for the three-phase converters 
similar to (10) and (16), it is necessary to obtain the 
equivalent SISO transfer functions for G(s).  

In order to demonstrate how the dynamic decoupling is 
achieved, let us considered the three-phase three-wire 
converters with a first-order output filter. The matrix transfer 
function for this converter is expressed as: 

 
( ) ( ) ( )

( ) ( )2 (3 ) 1 (3 )
( ) ( )1 (3 ) 1 (3 )

a ab

b bc

s s s
I s V ssL sL
I s V ssL sL

=

    
=    −    

y G V
 (19) 

It is assumed that the structure and parameters of the filter 
are symmetric. In this way, it is ensured that every element 
of G(s) present an similar s-domain rational polynomial 
function, as can be seen in (19), where the differences among 
the entries are their gains. As a result, the matrix transfer 
function G(s) can be expressed as: 
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By rewriting (20), it possible to obtain on equivalent 
decoupled transfer function, that is: 
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So the matrix transfer function can be rewritten as 
equivalent SISO transfer functions. For the considered 
converter, the equivalent SISO transfer functions of (19) are 
expressed as 
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As g(s) in (23) are similar to G(s) in (14), the 
determination of the THDi for each current in the considered 
converter can be performed using the same procedure 
described in Section II.2. For instance, substituting (14) by 
g(s) and Vab by Ve1,1 in (16), it is obtained in (17) the THDi 
for ia. 

This methodology for the dynamic decoupling can be 
directly applied to the others first-order and second-order 
filters. Where for, the second-order filters it is required the 
same considerations for G(s) as earlier described for G(s) in 
the Section II.1.  

So it is possible to write generic equations for the THD of 
all elements of y(s). These equations are written in function 
of the normalized modulation amplitude ratio m, 0≤m≤1. The 
relation between m and ma is give as: m = ma / g, where g is 
defined as the maximum possible line-to-line voltage (first 
four topologies in Table I) or phase voltage (last two 
topologies in Table I), that can be generated by converter in 
relation to the DC bus. The generic equations of the THD are 
given as 
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j is the index of the element of y(s), c is a parameter 
associated to the g(s) of each topology and 

*
1, 1,( ) ( )=e j e j DCV k V k gV , *

2, 2,( ) ( )=e j e j DCV k V k gV .  
In those topologies were the PWM patterns in each phase 

are identical (except for a shifting in time), the resulting THD 
in all elements of y(s) are equal. For the converters described 
in this paper, only the three-phase three-wire two-leg does 
not have this property. So, in order to obtain a single abacus 
for the selected switching sequence, the curves of nDF1 and 
nDF2 were plotted to ensure that in all outputs the THD is 
equal or smaller than the specified. 

The Table I present the values for c, g, m, Ve1,1 and Ve2,1 for 
the six basic voltage-fed converters topologies considered. It 
worth to emphasize that the normalized design curves 
provided for the three-phase three-wire converters are related 
to line-to-line voltages, while the analysis for the three-phase 
four-wire converters are related to phase voltages. As a 

 
TABLE I  

 Parameters for the calculation of THDi and  
THDv in the six basic converters topologies 

Inverter topology m c g Ve1,1 Ve2,1 
Single-phase  
half-bridge  2Vab/VDC 1 1/2 Vab Vab 

Single-phase  
full-bridge  Vab/VDC 1 1 Vab Vab 

Three-phase three-
wire two-leg 6 Vab/VDC 3 1/ 6  2Vab+Vbc Vab 

Three-phase three-
wire three-leg  Vab/VDC 3 1 2Vab+Vbc Vab 

Three-phase four-
wire three-leg  2 Vao/VDC 4 1/2 3Vao-Vbo-Vco 3Vao-Vbo-Vco-Vno 

Three-phase four-
wire four-leg 3 Vao/VDC 4 1/ 3  3Vao-Vbo-Vco 3Vao-Vbo-Vco-Vno 



result, the THD and the normalized modulation amplitude 
ratio (m) are also associated to line-to-line voltage for the 
former and phase voltages for the later.  

III. SVM FOR THE SIX BASIC VOLTAGE-FED 
CONVERTERS 

This section presents the SVM for the six-basic topologies 
of voltage-fed converters. Each topology can be 
characterized by its possible switching vectors and it 
input/output voltage space. The boundary and separation 
“planes” and the decomposition matrices for each topology 
where omitted for most of the topologies, since they have 
been presented in [5]. Only the three-phase two-leg converter 
has the boundary and separation “planes” presented here (in 
appendix), once it has not been presented in [5].  

In the following subsections are presented the possible 
switching vectors and a selected switching sequence for each 
topology. In addition, the linear transformations applied to 
the switching vectors in order to simplify the analysis of the 
output voltage spaces are described. Furthermore, they also 
include the switching sequences selected for the plotting of 
normalized design curves of nDF1 and nDF2. The abaci of 
nDF1 and nDF2 are given in the Fig.11 and Fig.12, 
respectively. 

1) Single-phase half-bridge voltage-fed converter: This 
converter, shown in the Fig.5(a), presents two possible 
switching vectors, as shown in Table II. The output voltage 
space is of dimension one, with a single sector, as shown in 
Fig.6(a). The only switching sequence for this converter is 
presented in Table IV. 

2) Single-phase full-bridge voltage-fed converter: This 
converter is shown in the Fig.5(b). It presents four possible 
switching vectors, as shown in Table III. Its output voltage 
space is of dimension one, with two distinct “sectors”, as 
shown in Fig.6(b). The selected switching sequence for the 
plotting of normalized design curves is presented in Table 
IV, whose PWM pattern is shown in the Fig.1(a). 

3) Three-phase two-legs three-wire voltage-fed converter: 
This converter, shown in the Fig.7(a), presents four possible 
switching vectors as can be seen in the Table V. As the 
output voltage space is of dimension two, in order to simplify 
the analysis, it have been applied abc to χδ transformation 
(ℜ3→ℜ2), which is given by (28). The resulting output 
voltage space is illustrated in Fig.8(a), where it is possible to 
be identified four distinct “sectors”. The selected switching 
sequence for the plotting of nDF1 and nDF2 is given in Table 
VII. 

 χδ

2 / 2 2 / 2 0

6 / 6 6 / 6 3 / 2

 −
=  

−  
T  (28) 

 

4) Three-phase three-legs three-wire voltage-fed converter 
This converter, shown in the Fig.7(b), presents eight possible 
switching vectors as can be seen in the Table VI. The output 
voltage space is of dimension two, as illustrated in Fig.8(b). 
For this figure it have been used the abc to αβ transformation 
(ℜ3→ℜ2) given by (29). The output voltage space has six 
distinct “sectors”, that are also illustrated in Fig.8(b). In 
addition, the selected switching sequence to derive the 
normalized design curves of the Fig.11 and Fig.12 is 
presented in Table VII. 

 αβ

1 1/ 2 1/ 22
3 0 3 / 2 3 / 2

− − 
=  

− 
T  (29) 

5) Three-phase three-legs four-wire voltage-fed converter:  
This converter, shown in the Fig.9(a), has eight possible 
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Fig.5. Single-phase converters and their input/output filters:  
 (a) half-bridge topology;  (b) full-bridge topology; 

 (c) second-order filter; (d) first-order filter. 

TABLE II 
 Possible switching vectors of the 

single-phase half-bridge converter 

Q1 aov′  bov′  abv′  Vectors 
0 1/2 0 1/2 v0 
1 1/2 1 -1/2 v1 

 

 v 1 v 0 
  ab v ′ 

0      
 
 
 
 

     
   v 2 v 1 

  ab v ′ v 3 v 0 S 2 S 1 
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Fig.6. Output voltage spaces of single-phase converters: 
(a) half-bridge topology;  (b) full-bridge topology. 

TABLE III 
Possible switching vectors of the 

 single-phase full-bridge converter 
Q1 Q3 aov′  bov′  abv′  Vectors 
0 0 0 0 0 v0 
1 0 1 0 1 v1 
0 1 0 1 -1 v2 
1 1 1 1 0 v3 

 

TABLE IV 
Switching sequences for the single-phase converters 

Sector Half-bridge converter Full-bridge converter 
1 v1-v2 v0-v1-v0 
2 - v0-v2-v0 

 

(a) (c) 

(b) (d) 

(a) 

(b) 



switching vectors as can be seen in the Table VIII. The 
resulting output voltage space is of dimension three, as can 
be seen in Fig.10(a). As this converter is usually analyzed in 
a 0αβ coordinates, the abc to 0αβ transformation (ℜ3→ℜ3) 
given by (30) has been applied to its switching vectors. The 
resulting output voltage space has six distinct sectors 
(tetrahedrons), as shows the Fig.10(a). The selected 
switching sequence for design in Table X. 

 0αβ

1 2 1 2 1 2
2 1 1 2 1 2
3

0 3 2 3 2

 
 

= − − 
 − 

T  (30) 

6) Three-phase four-legs four-wire voltage-fed converters: 
This converter, shown in the Fig.9(b), presents sixteen 
possible switching vectors as can be seen in the Table IX. 
The resulting output voltage space is of dimension three, as 
can be seen in Fig.10(b). It has been applied the abc to 0αβ 
transformation (ℜ3→ℜ3) to its switching vectors. The output 
voltage space has twenty-four distinct sectors (tetrahedrons). 
The selected switching sequence for the given curves is 
presented in Table X. 

IV. EXPERIMENTAL EVALUATION OF THE FILTER 
DESIGN PROCEDURE 

In this section experimental results of the proposed design 
procedure are presented. In order to exemplify the procedure 
second-order low-pass output filters for three-phase four-legs 
four-wire inverter has been designed. The designed filters 

were experimentally evaluated using a 15 kVA four-leg 
voltage-source inverter with a VDC = 350V DC bus, where the 
SVM were generated by a TMS320F241 DSP controller. 

The following specifications have been considered for the 
design: f1=60Hz, THDv=2%, m=1 (ma=0.577), fs=5kHz and 
the switching sequence given by Table X. From this 
specifications the corner frequency of this filter was 
determined using (24), where ms= fs / f1=83.33, c=4 (see 
Table I) and where the nDF2 distortion factor was obtained 
from the abacus of Fig.11. In this case, nDF2=0.66, that 
applied in (24) results in ωc= 8305rad/s. An inductor of 
L=250µH has been chosen, and using the relation ωc = 
1/ LC , the capacitor has been determined as C=58µF. A 
commercial value of 60µF has been selected. For this values 
of L and C, a THDv=1.73% have been found from simulation. 
Then the THDv in this filter was measured experimentally. 
The inverter was tested with the same given specifications at 
no-load, resulting in THDv=1.14%.  

The Table XI presents other results for different 
normalized modulation amplitude ratios, switching 
frequencies and filter parameters. It is seen a good agreement 
between of the THDv calculated by the proposed design 
procedure and the THDv obtained experimentally. These 
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Fig.7. Three-phase three-wire converters and their input/output 

filters:  (a) two-leg topology;  (b) three-leg topology;  
(c) second-order filter; (d) first-order filter. 
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Fig.8. Output voltage spaces of the three-phase three-wire 
converters:  (a) two-leg topology in χδ coordinates; 

(b) three-leg topology in αβ coordinates. 
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Fig. 9. Three-phase four-wire converters and their input/output 
filters:  (a) three-leg topology;  (b) four-leg topology;  

(c) second-order filter; (d) first-order filter. 
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comparisons clearly demonstrate the validity of the proposed 
methodology. 

 

V. CONCLUSIONS 

This paper presents a filter design procedure for SVM 
voltage-fed converters. The supporting hypothesis and 
simplifications as well as a brief description of the SVM are 
also presented. It has been shown that the proposed 

procedure is straightforward and that it can be easily 
extended to others converters and others switching 
sequences. Finally, comparisons between theoretical and 
experimental results have been used to demonstrate the 
validity of the proposed methodology. 

TABLE V 
 Possible switching vectors of the  

three-phase two-leg three-wire converter 
Q1 Q3 abv′  bcv′  cav′  χv′  

δv′  Vectors 

0 0 1/2 0 -1/2 66−  0 v0 
0 1 1/2 -1 1/2 0 22−  v1

 

1 0 -1/2 1 -1/2 0 22  v2 
1 1 -1/2 0 1/2 66  0 v3 

 

TABLE VI 
Possible switching vectors of the  

three-phase three-leg three-wire converter 
Q1 Q3 Q5 abv′  bcv′  cav′  αv′  

βv′  Vectors 
0 0 0 0 0 0 0 0 v0 
0 0 1 0 -1 1 32  0 v1

 

0 1 0 -1 1 0 61  21  v2 
0 1 1 -1 0 1 61−  21  v3 
1 0 0 1 0 -1 32−  0 v4 
1 0 1 1 -1 0 61−  21−  v5 
1 1 0 0 1 -1 61  21−  v6 
1 1 1 0 0 0 0 0 v7 

 

TABLE VII 
Switching sequences for  

three-phase three-wire converter 
Sector Two-leg converter Three-leg converter 

S1 v0-v2-v3-v2-v0 v0-v1-v2-v7-v2-v1-v0 
S2 v0-v1-v3-v1-v0 v0-v3-v2-v7-v2-v3-v0 
S3 v0-v1-v3-v1-v0 v0-v3-v4-v7-v4-v3-v0 
S4 v0-v2-v3-v2-v0 v0-v5-v4-v7-v4-v5-v0 
S5 - v0-v5-v6-v7-v6-v5-v0 
S6 - v0-v1-v6-v7-v6-v1-v0 

  

TABLE VIII 
Possible switching vectors of the  

three-phase three-leg four-wire converter 
Q1 Q3 Q5 anv′  bnv′  cnv′  0v′  

αv ′  βv′  Vectors 

0 0 0 –1/2 –1/2 –1/2 3 2−  0 0 v0 
1 0 0 1/2 –1/2 –1/2 63−  36  0 v1

 

1 1 0 1/2 1/2 –1/2 63  61  22  v2 
0 1 0 –1/2 1/2 –1/2 63−  61−  22  v3 
0 1 1 –1/2 1/2 1/2 63  36−  0 v4 
0 0 1 –1/2 1/2 –1/2 3 /6−  61−  2 / 2−  v5 
1 0 1 1/2 –1/2 1/2 3 / 6  61  2 / 2−  v6 
1 1 1 1/2 1/2 1/2 3 / 2  0 0 v7 

 

TABLE IX 
 Possible switching vectors of the  

three-phase four-wire four-leg converter 
Q1 Q3 Q5 Q7 v'an v'bn v'cn 0v′  

αv ′  
βv ′  Vectors 

0 0 0 0 0 0 0 0 0 0 v0 
0 0 0 1 –1 –1 –1 0 0 3−  v1 
0 0 1 0 0 0 1 6 / 6−  2 / 2−  3 /3  v2 
0 0 1 1 –1 –1 0 6 / 6−  2 / 2−  2 3 /3−  v3 
0 1 0 0 0 1 0 6 / 6−  2 / 2  3 /3  v4 
0 1 0 1 –1 0 –1 6 / 6−  2 / 2  2 3 /3−  v5 
0 1 1 0 0 1 1 6 /3−  0 2 3 /3  v6 
0 1 1 1 –1 0 0 6 /3−  0 3 /3−  v7 
1 0 0 0 1 0 0 6 /3  0 3 /3  v8 
1 0 0 1 0 –1 –1 6 /3  0 2 3 /3−  v9 
1 0 1 0 1 0 1 6 / 6  2 / 2−  2 3 /3  v10 
1 0 1 1 0 –1 0 6 / 6  2 / 2−  3 /3−  v11 
1 1 0 0 1 1 0 6 / 6  2 / 2  2 3 /3  v12 
1 1 0 1 0 0 –1 6 / 6  2 / 2  3 /3  v13 
1 1 1 0 1 1 1 0 0 3  v14 
1 1 1 1 0 0 0 0 0 0 v15 

TABLE X 
Switching sequence for the  

three-phase four-wire converter 
Tetrahedron Three-leg four-wire 

converter 
Four-leg four-wire  

converter 
S1 v0-v1-v2-v7-v2-v1-v0 v0-v8-v12- v14-v15-v14-v12-v8-v0 
S2 v0-v3-v2-v7-v2-v3-v0 v0-v8-v12-v13-v15-v13-v12-v8-v0 
S 3 v0-v3-v4-v7-v4-v3-v0 v0-v8-v9-v13-v15-v13-v9-v8-v0 
S4 v0-v5-v4-v7-v4-v5-v0 v0-v1-v9-v13-v15-v13-v9-v1-v0 
S 5 v0-v5-v6-v7-v6-v5-v0 v0-v4-v12-v14-v15-v14-v12-v4-v0 
S 6 v0-v1-v6-v7-v6-v1-v0 v0-v4-v12-v13-v15-v13-v12-v4-v0 
S 7 - v0-v4-v5-v13-v15-v13-v5-v4-v0 
S 8 - v0-v1-v5-v13-v15-v13-v5-v1-v0 
S 9 - v0-v4-v6-v14-v15-v14-v6-v4-v0 
S 10 - v0-v4-v6-v7-v15-v7-v6-v4-v0 
S 11 - v0-v4-v5-v7-v15-v7-v5-v4-v0 
S 12 - v0-v1-v5-v7-v15-v7-v5-v1-v0 
S 13 - v0-v2-v6-v14-v15-v14-v6-v2-v0 
S 14 - v0-v2-v6-v7-v15-v7-v6-v2-v0 
S 15 - v0-v2-v3-v7-v15-v7-v3-v2-v0 
S 16 - v0-v1-v3-v7-v15-v7-v3-v1-v0 
S 17 - v0-v2-v10-v14-v15-v14-v10-v2-v0 
S 18 - v0-v2-v10-v11-v15-v11-v10-v2-v0 
S 19 - v0-v2-v3-v11-v15-v11-v3-v2-v0 
S 20 - v0-v1-v3-v11-v15-v11-v3-v1-v0 
S 21 - v0-v8-v10-v14-v15-v14-v10-v8-v0 
S 22 - v0-v8-v10-v11-v15-v11-v10-v8-v0 
S 23 - v0-v8-v9-v11-v15-v11-v9-v8-v0 
S 24 - v0-v1-v9-v11-v15-v11-v9-v1-v0 
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Fig.11. First-order normalized distortion curves (nDF1) Fig.12. Second-order normalized distortion curves (nDF2) 

 
TABLE XI 

 Comparison between calculated and measured values 
of THDv  for a three-phase four-leg four-wire inverter 

Test 
conditions m fs (kHz) L(µH) C (µF) THDv (%) 

calculated 
THDv (%) 
measured 

1 1 5 250 60 1.73 1.14 
2 1 5 500 60 0.88 0.66 
3 1 2.5 250 60 7.73 7.22 
4 1 2.5 500 60 3.67 3.08 
5 0.5 5 250 60 1.94 1.38 
6 0.5 5 500 60 1.04 0.80 
7 0.5 2.5 250 60 8.57 8.28 
8 0.5 2.5 500 60 3.89 3.63 
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APPENDIX 

Boundary and separation “planes” of the three-phase  
two-leg three-wire converters 

Sector Boundary “Planes” Separation “Planes” 

S1 1PL 3 2 / 2 0∴ + − =u uγ δ  u 0 and u 0χ δ≥ ≥  

S2 1PL 3 2 / 2 0∴ − − =u uγ δ  u 0 and u 0χ δ< ≥  

S3 1PL 3 2 / 2 0∴ + + =u uγ δ  u 0 and u 0χ δ< <  

S4 1PL 3 2 / 2 0∴ − + =u uγ δ  u 0 and u 0χ δ≥ <  
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