
Dynamic Overmodulation Characteristics of Triangle Intersection
PWM Methods

Ahmet M. Hava y Seung-Ki Sul � Russel J. Kerkman z Thomas A. Lipo y

y U. of Wisconsin-Madison �School of Electrical Engineering z Rockwell Automation-Allen Bradley

1415 Engineering Drive Seoul National University 6400 W. Enterprise Drive

Madison, WI 53706-1691 Seoul, Korea Mequon, WI 53092-0760

e-mail: hava@cae.wisc.edu sulsk@plaza.snu.ac.kr rjkerkman@meq1.ra.rockwell.com lipo@engr.wisc.edu

Abstract— In this paper dynamic overmodulation characteristics of
current regulated carrier based high performance PWM-VSI drives are
investigated. Dynamic and steady state overmodulation operating modes
are clearly distinguished, and the requirements for obtaining high per-
formance in each mode are shown to be significantly different. Dynamic
overmodulation characteristics of the popular triangle intersection PWM
methods are modeled and shown to be unique for each method. The
study reveals Space Vector PWM (SVPWM) exhibits a minimum voltage
magnitude error characteristic. It also indicates all the advanced triangle
intersection PWM methods including SVPWM have limited dynamic over-
modulation performance. To enhance the performance, an algorithm with
superior performance is adapted from the direct digital PWM approach.
Detailed induction motor drive simulations illustrate the deficiency of pop-
ular triangle intersection PWM methods and the performance gained with
the new dynamic overmodulation algorithm.

I. INTRODUCTION

Voltage Source Inverters (VSIs) are widely utilized in AC motor drive,
utility interface, and Uninterruptible Power Supply (UPS) applications
as means for DC , AC electric energy conversion. Shown in Fig-
ure 1, the classical VSI which has 8 discrete voltage output states,
generates a low frequency output voltage with controllable magnitude
and frequency by programming high frequency voltage pulses. Of the
various pulse programming methods, the carrier based Pulse Width
Modulation (PWM) methods are the preferred approach in most ap-
plications due to the low harmonic distortion waveform characteristics
with well defined harmonic spectrum, the fixed switching frequency,
and the implementation simplicity.

Carrier based PWM methods employ the “per carrier cycle volt-
second balance” principle to program a desirable inverter output volt-
age waveform. The triangle intersection implementation technique [1]
which is increasingly being implemented in digital hardware/software
and the direct digital pulse programming technique [2] (always digi-
tal software) are the two main methods to match the inverter output
voltage with the reference value. As shown in Figure 2, in isolated
neutral type applications the triangle intersection method is often ac-
companied with a zero sequence signal injection technique to enhance
the drive performance when compared to Sinusoidal PWM (SPWM).
Figure 3 illustrates the modulation waveforms of the popular zero se-
quence signal injection PWM methods [3, 4]. In the direct digital
PWM technique, summarized in Figure 4 the vector space concept
aids the calculation of the inverter state time lengths providing the per
carrier cycle volt-second balance. In this approach, the partitioning of
the two inverter zero states (defined as �0 = t0

t0+t7
, and �7 = 1 � �0)

provides the necessary degree of freedom in obtaining high perfor-
mance [5]. The popular direct digital PWM methods are shown in
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Fig. 1. Circuit diagram of a PWM-VSI drive connected to an R-L-E type load.
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Fig. 2. The generalized signal block diagram of the triangle intersection tech-
nique based PWM employing the zero sequence injection principle.

Figure 5 and their triangle intersection equivalents indicated [4].
In both the triangle intersection and direct digital techniques, the

inverter voltage linearity is determined by the modulator characteris-
tics. In the triangle intersection PWM technique, when the modulation
signal magnitude becomes larger than the triangle peak value, and in
the direct digital PWM technique when the reference voltage vector
exceeds the inverter voltage hexagon boundaries, the voltage linear-
ity is lost. With the exception of SPWM and THIPWM1/4, all the
methods illustrated in Figure 3 and Figure 5 are linear in the [0; 0:907]
modulation index range (M�

i = jV �j
V1m6step

where V1m6step = 2Vdc
�

and j V � j is the magnitude of the reference voltage vector). The
SPWM method looses fundamental component voltage linearity at
0.785 modulation index, and THIPWM1/4 at 0.881 [6]. Outside the
linearity range, the ratio of the output voltage fundamental component
to its reference value is less than unity. This ratio, the voltage gain
(G), rapidly decreases towards zero as the six-step mode is approached.
Furthermore, the inverter output voltage contains substantial subcar-
rier frequency harmonics and drive performance degrades consider-
ably [6]. The overmodulation range fundamental component voltage
gain and waveform quality characteristics of the popular PWM meth-
ods, which are important for open loop (volts-per-hertz) controlled AC
motor drives, are well understood [6, 7, 8].



High performance AC motor drive and utility interface applica-
tions require closed loop current control algorithms with superior dy-
namic performance characteristics (in addition to the high steady state
performance). Shown in Figure 6, the Synchronous Frame Current
Regulator (SFCR) is the industry standard high performance current
control algorithm. Although the linear modulation range performance
of the SFCR meets the requirements in most applications, in the over-
modulation region the drive performance significantly degrades, and
bandwidth is lost [7, 9, 10, 11, 12]. Therefore, the steady state opera-
tion of the high performance PWM-VSI drives is confined to the linear
modulation range. However, operation in the overmodulation region
is allowed during transients and in the so called “dynamic overmod-
ulation” region the full voltage capability of the modulator is utilized
to improve the dynamic response. For example, in an induction mo-
tor drive, the speed response and robustness to load torque variations
and disturbances can be greatly improved. Since the duration of the
transients can be smaller than the maximum fundamental cycle, the
per fundamental cycle modulator characteristics are not appropriate
for the investigation of the dynamic overmodulation behavior of a
modulator, and the per carrier cycle voltage linearity is important. The
dynamic overmodulation characteristics of various direct digital PWM
methods were investigated in [10, 13, 14] and various solutions with
performance and implementation complexity trade-offs have been de-
veloped. The dynamic overmodulation characteristics of the triangle
intersection PWM methods of Figure 3, however, have not been re-
ported and their behavior is not well understood.
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Fig. 3. Modulation waveforms of the popular PWM methods (Mi = 0:7).
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This paper investigates the dynamic overmodulation characteristics
of the popular triangle intersection PWM methods. The first section
reviews the direct digital PWM dynamic overmodulation methods.
In the second section the dynamic overmodulation characteristics of

the popular triangle intersection PWM methods are analyzed in detail.
Following the discussion on the influence of these characteristics on the
drive performance in various applications, the induction motor drive
behavior is investigated in detail and strong correlation is obtained
between the theory and simulations.
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Fig. 5. Zero state partitioning of the popular PWM methods. DPWMMIN,
DPWMMAX, and SVPWM have space invariant partitioning.

II. DIRECT DIGITAL PWM DYNAMIC OVERMODULATION

In the space vector approach, employing the following complex vari-
able transformation, the time domain modulation signals are trans-
formed to the reference vector V � which rotates in the complex coor-
dinates at an angular speed wet.

V
� =

2
3
(v�a + av

�
b + a

2
v
�
c ) = V

�
1me

jwet where a = e
j 2�

3 (1)
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Fig. 6. High performance induction motor drive system diagram.

In the direct digital PWM technique, the complex number volt-
second balance equation in the R’th sector of the inverter voltage
hexagon in Figure 4 determines the time length of the two adjacent
active inverter statesR andR+ 1 (R = 6 ! R+ 1 = 1) and the total
zero state time length in the following [2].

VRtR + VR+1tR+1 = V
�
Ts (2)

tR =
2
p

3
�

Misin (R
�

3
�wet)Ts (3)

tR+1 =
2
p

3
�

Misin (wet� (R� 1)
�

3
)Ts (4)

t0 + t7 = Ts � tR � tR+1 (5)

The zero state partitioning is decided by the programmer and typ-
ically a modulator among those shown in Figure 5 is selected with
switching loss and waveform quality considerations [22]. Figure 4
indicates the per fundamental component voltage linearity of all the
direct digital PWM methods is bounded by the circle which touches
the inverter voltage hexagon and the per carrier cycle voltage linearity
boundary is the hexagon. However, once the reference voltage vector
tip point lies outside the hexagon, (5) yields a negative time length,
hence an inevitable per carrier cycle volt-seconds error. A voltage vec-
tor on the hexagon boundary (the modified reference voltage vector)
must be selected and at least one back step has to be taken to re-
calculate the vector time lengths that generate the modified reference
voltage vector. Shown in Figure 7, the three popular modified reference
vector choices are the Minimum Magnitude Error PWM (MMEPWM)
method (also called one-step-optimal method) [23, 13], the Minimum
Phase Error PWM (MPEPWM) method [14], and the Dynamic Field
Weakening PWM (DFWPWM) method [10, 11]. These methods were
evaluated in [10, 11] for induction motor and AC Permanent Mag-
net (PM) motor drives. The superiority of the last method and the
implementation simplicity of the second were shown.

In the triangle intersection PWM technique, unlike the direct digital
PWM technique, the time lengths of the inverter states are not ex-
plicitly calculated: they are an end result of the comparison between
the triangular carrier wave and the modulation waves. Therefore, an
overmodulation condition can be detected when the modulation wave
signal magnitude exceeds the triangle wave magnitude and switching
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Fig. 7. Vector space illustration of the popular direct digital PWM technique
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minimum magnitude error method, c: dynamic field weakeningmethod.

ceases. The overmodulation intervals, i.e. the reference voltage vec-
tors lying outside the modulator hexagon exhibit unique voltage error
characteristics in each triangle intersection PWM method which will
be analyzed in detail in the following section.

III. TRIANGLE INTERSECTION PWM DYNAMIC OVERMODULATION

CHARACTERISTICS

In the triangle intersection PWM technique, a reference voltage outside
the triangle wave boundaries �Vdc

2 can not be generated. Modelling
this saturation, dynamic overmodulation characteristics of any triangle
intersection PWM method can be obtained. With this approach, by
passing the reference modulation waves through the limiters shown in
Figure 8 and employing transformation (1), as indicated in Figure 7,
for any reference voltage vector V �

dq = j V �
dq jej�

�

, an output voltage
vectorVdq = j R(�) jej� is produced. Since the zero sequencesignals
of all the popular modulation methods are symmetric and periodic,
characterizing the first sector of the hexagon is sufficient. Since the
hexagon boundaries are known, characterizing the angular relations,
� = f(��;M�

i ) is sufficient. For example, in the first sectorR(�) can
be calculated by the following.

j vdq j= R(�) =
Vdcp

3sin (� + �
3 )

(6)

Va
* *

Vb
* *

*Vc
*

B

B

-B

-B
B

B

-B

-B
B

B

-B

-B

B=0.5 Vdc

Vc

Va

Vb

Fig. 8. The saturation block diagram of the triangle intersection PWM methods.

j v�dq jej�
�

j vdq jej�

The dynamic overmodulation characteristics of the triangle inter-
section PWM methods shown in Figure 3 have been analyzed with the



above approach. The characteristics of SVPWM and the six popular
DPWM methods are summarized in the following, while the SPWM,
THIPWM1/4 and THIPWM1/6 characteristics are omitted and detailed
analysis can be found in [9].

The triangle intersection implementation of SVPWM is possibly
the earliest and simplest zero sequence injection PWM method de-
veloped [19]. This method employs the minimum magnitude test to
determine the zero sequence signal. Assume jv�aj � jv�b j; jv�c j, then
v0 = 0:5 � v�a. The analog implementation of triangle intersection
SVPWM employs a diode rectifier circuit to collect the minimum mag-
nitude signal from the three reference signals [19]. The digital imple-
mentation requires only three comparisons and a scaling to obtain this
signal [24]. In either case, when the modulation signal becomes larger
than the saturation boundaries�Vdc

2 , the saturated modulation signals
can be transformed by (1) and in the first segment (0 � �� � �

3 ), the
output voltage vector angle can be calculated in the following.

�SV PWM = arctan (
p

3
1 + 6

�
M�

i cos(�
�� 2�

3 )

3� 6
�
M�

i cos(�
�� 2�

3 )
) (7)

A software which graphically overlays the MMEPWM, and
MPEPWM, and triangle intersection SVPWM dynamic overmodula-
tion reference-output voltage vector trajectories indicated a surprising
result: The MMEPWM and SVPWM vectors are exactly the same.
Calculated by projecting the tip point of the reference voltage vector
on the hexagon side (point b in Figure 7), the analytical angle relation
of MMEPWM yields the following formula.

�MMEPWM = � = ��

3
+ arctan (

�

2
p

3M�
i cos(�

� + �
3 )

) (8)

Although (7) and (8) are different in form, their numerical evalua-
tion which is shown in Figure 9 reveals the fact that their performance
is the same. This result indicates when implemented with the triangle
intersection technique, the SVPWM method provides very fast (one
step optimal) dynamic overmodulation response. The MMEPWM
methods employed in practice are complex and computationally in-
volved [23, 13]. The triangle intersection SVPWM, however, can be
implemented in hardware or software with minimum complexity.
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The six popular Discontinuous PWM (DPWM) methods of which
their waveforms are shown in Figure 3 have found application in high

performance drives due to their low switching loss characteristics and
low current ripple characteristics [3, 22]. Dynamic overmodulation
characteristics of these modulators can be modeled depending on their
zero state partitioning which was summarized in Figure 5. A zero state
partitioning of �0 = 1, which corresponds to DPWM0 and DPWM-
MIN in the first hexagon sector, provides the following phase relations.

�DPWM0 = arctan (
6
�
M�

i sin ��

2� 2
p

3
�
M�

i sin ��
) (9)

For DPWM2 and DPWMMAX the zero state partitioning in the
first hexagon sector is zero (�0 = 0) and the dynamic overmodulation
angle relations are calculated as follows.

�DPWM2 = arctan (
p

3
1 � 2

p
3

�
M�

i cos (�� + �
6 )

1 + 2
p

3
�
M�

i cos (�� + �
6 )

) (10)

Since in DPWM1 the zero state partitioning is �0 = 0 for 0 � �� �
�
6 and �0 = 1 for �

6 � �� � �
3 , the overmodulation phase relations

are calculated from (9) and (10) in the following.

�DPWM1 =
n

�DPWM2 0 � �� � �
6

�DPWM0
�
6 � �� � �

3
(11)

The dynamic overmodulation characteristics of DPWM3 are found
with the same approach in the following.

�DPWM3 =
n

�DPWM0 0 � �� � �
6

�DPWM2
�
6 � �� � �

3
(12)

The following phase error,4�, definition aids the discussion on the
modulator dynamic overmodulation characteristics.

4� = �
� � � (13)

The reference and output voltage vector phase relations of DPWM0,
DPWM1, and DPWM2 are shown in Figures 10, 11, and 12 for various
M�

i values. In DPWM0 the output vector always leads the reference
voltage vector while for DPWM2 the opposite is true. Since DPWM1
is a combination of DPWM0 and DPWM2, in this case the output
vector lags the reference for the first 30� segment of the sector and
leads in the following 30� segment. Note the phase error of SVPWM
also changes polarity at 30�, however the change is smoother and the
error magnitude is smaller. DPWM3 follows the opposite pattern of
DPWM1 and both in DPWM1 and DPWM3 the output voltage vector
experiences a jump near the midsection of the hexagon sector (avoiding
the vector at �

6 ). For all the discussed methods the behavior in the
first 60� is repeated periodically in the remainder of the sectors. In all
the methods, an increase in the modulation index results in phase error
increase and the error is the largest in DPWM1. Since the phase error
completely determines the dynamic overmodulation performance of a
modulator, the � = f(��) (or 4� = f(��) )relations are the main
characteristics in predicting the modulator dependent drive dynamic
behavior.

In practice, the theoretical modulator linearity boundaries are fur-
ther reduced due to the inverter blanking time and/or minimum pulse
width constraint of the inverter drives [6]. If the narrow voltage pulses
are eliminated, the output voltage magnitude becomes larger than the
theoretical value and the phase error polarity is always opposite to
theoretical modulator phase error polarity. The phase and magnitude
errors are dependent on the minimum pulse width to the carrier cycle
ratio and increase with it. Further detail on modeling these second
order effects is reported in [9].
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IV. DRIVE DYNAMIC OVERMODULATION BEHAVIOR

The dynamic overmodulation performance of an AC motor drive or an
AC line connected PWM-VSI is determined by the modulator phase
error characteristics, the drive control algorithm, and load characteris-
tics. In the following we first discuss the SFCR design, then investigate
the system (SFCR-modulator-load) level overmodulation behavior.

Since the conventional SFCR design assumes modulator linearity,
in the overmodulation region significant delays and overshoot can re-
sult. To minimize the performance degradation,antiwindup controllers
which bound the integrator outputs of the Proportional Integral (PI)
controllers are employed, and selecting a proper integrator limit value
is vital in maximizing the dynamic performance [25]. An approach
which selects SFCR integrator boundaries that keep the controller out-
put signals on the edge of linearity was reported in [10, 11]. In this
approach, shown in Figure 13, the SFCR discrete time signal flow
diagram antiwindup limiters are only activated in the overmodulation
region. During the (n)’th carrier cycle, the (n+1)’th cycle reference
voltagesv�qe andv�de are calculated and transformed to stationary frame
“abc” variables. In the modulator block, a zero sequence signal is in-
jected to the “abc” voltages to form the modulation signals. These
signals are passed through the saturation limits of Figure 8 and rotated
to the synchronous frame to predict the (n+1)’th cycle output voltages
vqe and vde. If the reference and output signals are different (indicat-
ing a dynamic overmodulation condition), then the antiwindup signals
reset the integrators to the boundary values ibqe and ibde (signal flow
through “NL”), otherwise the linear modulation operating mode re-
sumes (signal flow through “L”). In the overmodulation region, the
“d” and “q” channel integrators are reset to v�qe � vqe and v�de � vde
values so that in the following carrier cycle the calculated reference
voltage vector is close to the hexagon boundary. With this approach,
if the error reverses polarity, the linearity region is immediately re-
entered. If the error is zero or its polarity does not change, then
the reference voltage remains near the modulator linearity boundary,
however at a different point.
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Fig. 13. Discrete time signal flow diagram of the synchronous frame PI current
controller with anti-windup.

i�qse(n + 1)

i�dse(n + 1)

iqse(n)

idse(n)

v�qefb

v�defb

Kp

Kp

KiTs

KiTs

v�qe

v�de

vqe

vde

v�qeff

v�deff

M
od

ul
at

or
M

od
el

A
nd

C
oo

rd
in

at
e

T
ra

ns
fo

rm
at

io
ns

ibqe

ibde

Along with the modulator and SFCR with antiwindup, the inverter
DC voltage source and AC load characteristics define the system over-
modulation behavior. Perhaps the most intuitive explation of the drive
behavior is to consider the effect of the phase error on the synchronous
frame reference and output voltage vector “d” and “q” components.



Depending on the modulator phase error value, during a dynamic over-
modulation condition the inverter output voltage vector may lead or
lag the reference voltage vector, and the lead and lag conditions result
in different “de” and “qe” axis voltages. As a result the drift of the
“de” and “qe” axis currents from the reference values may be quite
different in the lagging and leading conditions. Therefore, the currents
drift from the reference values according to the modulator phase error
characteristics. For example, with SVPWM the drift always yields the
smallest current error vector every carrier cycle and therefore SVPWM
is suitable for applications where the inverter AC side current error
minimization is of prime interest. However, in motion control systems
the primary goal is to maintain the motion quality. A dynamic over-
modulation condition implies an increase in the demanded torque and
torque maximization is the prime concern. Since the torque maximiza-
tion criteria and current error minimization criteria may require two
different voltage vectors, the influence of the modulator phase error on
the drive motor torque must be clearly understood. In this paper only
the induction motor behavior will be discussed in detail and a study on
other types of systems can be found in [9].

As shown in Figure 14, the rotor flux oriented synchronous frame
induction motor steady state voltage vector diagram [26] indicates
during overmodulation condition the “qe” and “de” axis stator voltages
are different from the reference values and as a result the “qe” and “de”
axis currents drift from their reference values. Thus, the motor torque
linearity is lost (Te = Kte(iqse�dse � idse�qse)) and motion quality
degrades. For example, if v�dqse, vdqse and the “qe” axis are in the
first 30� segment of a hexagon sector, and vdqse lags v�dqse, then the
overmodulation condition results in a smaller vdse and larger vqse
compared to the phase error lead condition. As a result iqse becomes
larger and idse smaller than the lead case. Although this dynamic field
weakening condition may transiently increase the drive torque, motion
quality degrades due to the loss of torque linearity. As the current
regulation becomes poor and the field orientation condition is lost,
the rotor flux varies and dynamics are excited. Beyond this point the
dynamics can not be described with the steady state equivalent circuit
of the motor drive; therefore a full dynamic model is required for a
detailed investigation. However, the above discussed simple model
illustrates the importance of the modulator phase error and also aids in
explaining the influence of the phase lag and lead conditions. The most
important conclusion of this intuitive example is that with a strong
dynamic field weakening condition or the opposite effect the drive
performance may significantly degrade. Therefore, the modulator
phase error must be controlled in a manner to maintain good drive
performance as much as possible.

Triangle intersection PWM methods exhibit unique phase error
characteristics; therefore, it is expected that a drive perform differently
with different modulators. Since the current controller antiwindup lim-
iters bound the reference voltage magnitude (i.e. M�

i ), the phase error
magnitude is also practically bounded. Thus, the antiwindup limiters
are essential in avoiding unwanted dynamics. However, the antiwindup
limiters may not be sufficient to obtain high performance (any motor
torque is a strong function of the phase error and even a small phase
error may result in a strong dynamic condition) and a system level
study is required. In the following section, detailed induction motor
drive simulations address these performance issues.

V. COMPUTER SIMULATIONS

The theoretical modulator characteristic study has been supported by
detailed induction motor drive simulations. A 5 HP, 1745 RPM, 460
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Fig. 14. Synchronous frame rotor flux oriented induction motor voltage vector
diagram illustrated along with the inverter voltage vector diagram.

V, 6.9 A, 4 pole induction motor with the lumped equivalent circuit
parameters of rs = 1:97 Ohm, rr = 1:73 Ohm, Lls = Llr = 11:2
mH, Lm = 275:6 mH is driven through a PWM-VSI drive. The in-
verter DC bus voltage is 620 V, and the carrier frequency is 5 kHz. The
drive employs an indirect field orientation control algorithm [26], and
a fully digital synchronous frame PI current controller with voltage
feedforward and antiwindup provides high performance current regu-
lation [9, 24]. The digital current controller employs the synchronous
sampling technique with 5 kHz sampling rate. The controller band-
width is 250 Hz. The rated synchronous frame stator “d” and “q”
axis currents are IdseR = 3:38 A, and IqseR = 9:12 A. The drive
speed is controlled with a digital PI controller with antiwindup and the
antiwindup limit equals the inverter maximum current capability. The
speed controller sampling rate is 1 kHz and has a 25 Hz (electrical)
bandwidth. The drive total inertia is Jm = 0:05kgm2.

The computer simulations of Figure 15 to Figure 18 illustrate drive
overmodulation performance with various modulators. While the drive
is operating at 1500 RPM and no load, an overmodulation condition
is generated with a speed reference change and application of a load
torque. A speed ramp command, !�r , at t=0.65 [s] increases the speed
from 1500 RPM to 1600 RPM in 24 ms, and the load torque, TL,
increases at t=0.71 [s] from zero to 50% of the rated motor torque.
Figure 15 illustrates the dynamics with SVPWM. The voltage vec-
tor phase error polarity and magnitude vary according to Figure 9.
The current controller antiwindup channels keep the reference voltage
vector near the hexagon boundary (M�

i of (7) is kept small) and the
SVPWM method selects a vector close to the reference vector (one-
step-optimal) resulting in a small phase error. As Figure 15 indicates,
SVPWM provides good performance.

Shown in Figure 16, the DPWM0 modulated system always has
a negative phase error, consistent with the theoretical prediction. As
the output voltage vector leads the reference voltage vector more than
the SVPWM case, the field current experiences poorer regulation. Al-
though results show an increase in torque and slightly better speed re-
sponse, the oscillatory behavior can eventually result in a drive failure
under certain operating conditions. Shown in Figure 17, the DPWM1



modulated system exhibits similar behavior to SVPWM, however its
phase error magnitude is larger and the field current regulation ca-
pability degrades as in the DPWM0 case. Although DPWM1 has a
substantially higher fundamental componentgain than the other modu-
lators [6], its dynamic performance is poorer than SVPWM. Therefore,
it becomes clear that the open loop drive overmodulation performance
criteria which suggests the modulator with the highest voltage gain is
superior to the rest, and the closed loop system dynamic overmodula-
tion performance criteria which suggests the modulator with the best
speed response and disturbance rejection is superior to the rest, are
different and result a in different modulator selection.

Shown in Figure 18, the DPWM2 modulated system simulations
illustrate the dynamic overmodulation performance deficiency of this
method. The phase error is large and always positive (lagging); the
field current increases and results in reduced torque, hence very poor
dynamics. Although in induction motor drive applications the linear
modulation range switching loss characteristic of DPWM2 is superior
to other modulators [22], its overmodulation performance is quite poor.
Therefore, operation of this modulator in the overmodulation region
should be prohibited or further control algorithm modifications are
required.

The above simulation results indicate the SVPWM dynamic over-
modulation performance is superior to all the other triangle intersection
PWM methods. The modulator generates an output voltage vector with
a small phase error and its one-step-optimal current regulation charac-
teristic can successfully manipulate most dynamic conditions. How-
ever, very low inertia and very abrupt dynamic conditions could still
not be properly manipulated and sufficiently large phase error intervals
may result in unstable behavior and unacceptable drive performance.
Therefore the modulator choice must be carefully made.

Since the above simulation studies suggest the DPWM methods
have poor dynamic overmodulation characteristics and their large
phase errors result in strong unwanted dynamics, when employing
these modulators modifications to the drive control algorithm become
inevitable. Since the DPWM methods have superior linear modulation
range switching loss and waveform quality characteristics, a moder-
ate increase in the control algorithm complexity and drive cost can
be easily compensated with the performance gain. In this work two
modification methods are suggested.

In the first approach, the DPWM method of choice is combined
with SVPWM and when a dynamic overmodulation condition is de-
tected, SVPWM is activated while in the linear region the DPWM
method resumes control. Figure 19 illustrates the drive dynamic be-
havior with this algorithm. As the simulation waveforms indicate, in
the linear modulation region DPWM2 is active, however as a dynamic
overmodulation condition occurs the SVPWM signals are activated
and the dynamics are rapidly manipulated. Since recent commercial
drives often employ SVPWM and a DPWM method in combination to
improve the linear modulation range waveform quality (for small Mi

SVPWM and for large Mi DPWM is selected) and reduce switching
losses [22], the modulation signal generating blocks may already exist
in a drive and only an additional loop and re-calculation of the modula-
tion signals is required. In particular implementing such an algorithm
in a DSP based controller is an easy task.

In the second approach a more complex and higher performance
algorithm, the dynamic field weakening method can be adapted from
the direct digital technique [10, 11]. As shown in Figure 7, in this
approach, the motor back EMF, Êdqe, (calculated from the estimated
stator flux) and the PI current controller outputs V �

dqefb, are vectori-

Fig. 15. Induction motor drive SVPWM dynamic overmodulationbehavior un-
der speed reference ramp change and load torque step change.
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ally added and the intersection point with the hexagon (point “c” in
the figure) is the tip point of the vector that forces the current error
vector to move in the controller reference direction. By employing
this algorithm, the reference voltage vector which is outside the in-
verter hexagon, is modified and returned to the inverter hexagon with
a corrected phase such that any modulation method will exactly match
the modified reference vector. Therefore, the modification algorithm
performs equivalently with all the triangle intersection modulation
methods. The simulation waveforms in Figure 20 illustrate the per-
formance of DPWM2 combined with the dynamic field weakening
method. When a dynamic overmodulation condition occurs, the dy-
namic field weakening algorithm is activated and the reference vector
is modified and returned to the hexagon boundary such that DPWM2
exactly generates this vector. Note that this method generates a signifi-
cantly small phase error and the field current experiences less transients
than the SVPWM case. Also note the phase error alternates and dur-
ing the speed ramp the field current increases for a short time interval.
Due to this reason, a better term for the method would be “a phase
error regulation method.” This method however is fairly complex and
requires substantial amount of calculations for relocating the reference
voltage vector. Hence, only suitable for high performance fully digital
drives with fast DSP controllers.

VI. CONCLUSIONS

Dynamic overmodulation and steady state overmodulation issues are
different and the modulator fundamental gain characteristics are not
a sufficient performance measure to evaluate the dynamic overmod-
ulation performance. An elegant approach is the characterization of
the reference and modulator output voltage vector angle and magni-



Fig. 16. Induction motor drive DPWM0 dynamic overmodulationbehavior un-
der speed reference ramp change and load torque step change.
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Fig. 17. Induction motor drive DPWM1 dynamic overmodulationbehavior un-
der speed reference ramp change and load torque step change.
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Fig. 18. Induction motor drive DPWM2 dynamic overmodulationbehavior un-
der speed reference ramp change and load torque step change.
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Fig. 19. Induction motor drive DPWM2 (linear mode) and SVPWM (overmod-
ulation) combined algorithm dynamic overmodulation behavior.
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Fig. 20. Induction motor drive DPWM2 (linear mode) and DFWPWM (over-
modulation) combined algorithm dynamic overmodulation behavior.
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tude relations. A simple technique provides analytical tools to ob-
tain these characteristics. Each triangle intersection PWM method is
shown to have a unique dynamic overmodulation characteristic. The
investigation reveals the minimum voltage magnitude error dynamic
overmodulation attribute (one-step-optimal) of SVPWM method, in-
dicating a significant implementation advantage compared to the two
methods reported to achieve such performance. In a motor drive,
motion quality is more important than rapid current control and the
high performance phase error regulation approach is superior to the
inherent overmodulation characteristics of the popular PWM methods.
For intermediate dynamic overmodulation performance SVPWM pro-
vides satisfactory performance and for high dynamic overmodulation
performance a phase error regulation method is adapted from the di-
rect digital PWM technique to enhance the dynamic overmodulation
characteristics of the triangle intersection PWM methods. In both
methods the antiwindup limiters play an important role in keeping the
phase error small and maintaining high dynamic performance. The
theoretical modulator characteristics were verified by detailed com-
puter simulations. The experimental work is in progress and will be
reported shortly.
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